| ecture 37: ConvNets
(Cont'd) and Training

CS 4670/5670
Sean Bell

Tweaking Neural Net

- -
; -
N
3 -
~ .;..\ J
- i l.
< - _
O . -
|
». |
' .
>

http://bbabenko.tumblr.com/post/83319141207/convolutional-learnings-things-i-learned-by

Unrelated) Dog vs Fooa

eeec0 Verizon T 4:20 PM 76% N » eeeee \erizon 7 4:20 PM 34% 4

{ Albums chihuahua or muffin Select < Albums puppy or bagel Select

karen zack teenybi
puppy or bagel ?

* v wuck toonybiscuit - Mar 9 * ‘
; chihuahua or muffin ? rq

[Karen Zack, @teenybiscuit]

(Unrelated) Dog vs Food

eeees Verizon = 4:20 PM 69% M > eeeco Verizon = 4:20 PM 69% W

<{ Albums shiba or marshmallow Select { Albums kitten or ice cream Select

[Karen Zack, @teenybiscuit]

(Unrelated) Dog vs Food

eeeeo Verizon LTE 3:02 PM 42% 0) eeec0 Verizon T 4:20 PM 69% >

< Albums sheepdog or mop Select { Albums parrot or guacamole Select

/;gz /{(Q\\\\ \

0 \\i TRR

- \ | T

N\ \ . R, \
\ \- N \ .\‘\ B L Lol 1 :!' - :
d%&)\'\:&‘; “ A e eanISC L

+ karen zack < teenybiscut - Mar
»“‘ parm(ocguacamole?
£,

[Karen Zack, @teenybiscuit]

(Recap) Backprop

From Geoff Hinton’s seminar at Stanford yesterday

Stanford Seminar - Geoffrey Hinton of Google & University of Toronto

ow to learn many layers of features (~19895)

Compare outputs with
to get
error signal

QQ = OUIPUIS
oo O

2V X1 hidden

QQQQO" e

| d
O O O 4=mm |NPUL VECLOI .

Sity

(Recap) Backprop

Parameters: @ = 01 92

All of the weights and biases in the network,
stacked together

oL _| oL dL
00 | 00 06,

Gradient:

Intuition: “How fast would the error change if
[change myself by a little bit”

(Recap) Backprop

Forward Propagation: compute the activations and loss

(1) (n)
v AN v RN

X — | Function —>h(1)—>--- — | Function | = § — L

Backward Propagation: compute the gradient (“error signal”)

oL oL

06" TR
oL R oL B oL

Function |- «— -« «— | Function | «~ — <« [,

ox ohh Js

(Recap)

A ConvNet is a sequence of convolutional layers, interspersed with
activation functions (and possibly other layer types)

32 28 24

CONV, CONV, CONV,
RelLU RelLU RelLU

e.g.6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24

3 6 10

(Recap)

Convolution Layer

32x32x3 Image

32 height

3 depth

(Recap)

Convolution Layer

32x32x3 Image

32

32

5x5x3 filter
ﬁ
P Convolve the filter with the image

I.e. “slide over the image spatially,
computing dot products”

(Recap)

Convolution Layer Filters always extend the full

_——— depthof the input volume
32x32x3 image /

5x5x3 filter
32 /7

Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”
|4

LV

(Recap)

Convolution Layer

_— 32x32x3 image

5x5x3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

3 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz +b

~~ 1 number:

NG

(Recap)

Convolution Layer

activation map

_— 32x32x3 image

5x5x3 filter /
2
——0 .

convolve (slide) over all

spatial locations
3 28
1

NG

Convolution Layer

—

=

|z

(Recap)

consider a second, green filter

32x32x3 Image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

y

28

[

1

(Recap)

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

VAE
Convolution Layer

3 6

activation maps

28

We stack these up to get a "new image” of size 28x28x6!

Web demo 1: Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[{2,:,0)) w0[z2,:,0) wlf:,:,0 of:,:,0)
0 0 0 0 1 -1 -l 031 §-1 2 4 §
0 1 0 1 1 1 -l 1 O §-1 wl BN 12
0 1 1 0 0 -1 -1 0 §-1§-1 3 2 1
vl ptplploje w0[z,:,1) wlf:,:,1) ofz,:,1)
0220110 110 |1k 4 6 [1]
o1 1 0o o0 /ll/a//_,/,-/ 1 0-1J0 12 -4 1
0000000 — T o oye 6 -3 4
x[,:,1] - _—w0[1,:1,2) /,/f \:1 3471,2)

0 00 0[]0 140

0 1 1 1 [oT] b .

0o 0 o o [T 1o
Sl fhs b0 (1x1 Biag b1 (1x1x1)

(BN 20 (R E2 2 1N (0 bO[:,140) t,:,0)
0200020 : @

0O 0 0 0 0 0

x[:,:,2] togghe movement

0 0 0 0 0 |0

0 0 1 1 2

0 1 2 1 0 |0

0 1 1 2 2 0

0 1 0 2 1 0

0 1 01 2 0O

0 0O 0 0 0 0

http://cs231n.github.io/convolutional-networks/

[Karpathy 2016]

http://cs231n.github.io/convolutional-networks/

Web demo 2: ConvNet in a Browser

input (24x24x1) Activations:
max activation: 1, min: 0
max gradient: 0.12921, min: -0.16911

Activation Gradients:

conv (24x24x8) Activations:

filter size 5x5x1, stride 1 ']]
max activation: 2.06011, min: -1.57459 / -
max gradient: 0.09584, min: -0.14359

parameters: Bx5x5x1+8 = 208 Activation Gradients:
T
:‘h' ..:. »

Weights:
(7)) (2))(2)()(%)()
Weight Gradients:

(s)(™)RS0)(-))

relu (24x24x8)

Activations:
max activation: 2.06011, min: 0
max gradient: 0.09584, min: -0.14359 / ;

Activation Gradients:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/
mnist.html

[Karpathy 2014]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Weights
/

-

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = ZXFU.,{W. +b

ijk
ijk

(channel, row, column)

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
size of the input

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O[O0O[O|[O0]O0

Output

O]l OO | OO0l O]l OO O] O

@I NG NG NG o o

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

OpO0O 0101 0([0]O0

Output

Ol oo | OO0l O] O0O|OC| O] O

O]l OO | OO0l O]l OO O] O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O[O0 (0 PO OO O

Output

Ol oo | OO0l O] O0O|OC| O] O

O]l OO | OO0l O]l OO O] O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O]1]0]0((0|O0

Output

Ol oo | OO0l O] O0O|OC| O] O

@l NG NG NGR GoN NG

Input

Convolution:
How big is the output?

stride §
< >
ofofoflojo|oO|O|0O]|O
0 . , 0
0 kernel| k 0
0 O 1 In general, the output has size:
0 0
w. +2p—k
— | 1
0 0 Wout o |
e S —
0 0
0 0
ojfofoflojo|O|O]|0O]|O
<+—> <« > +—>

p width w,_ p

Convolution:
How big is the output?

stride s
010/0]0J0]0]0]0]|0]| Example: k=3, s=1, p=1
0 . . 0
0 crme 0 W= in P |
0 0 _ S _
0 0 w, +2—3
- ; — -1
I S
0 0
0 0 o Win
ojlo|o|lo|O|O|lO|O]|O |
VGGNet [Simonyan 2014]

p width w._ p uses filters of this shape

Pooling

For most ConvNets, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

- The "max” operation is the most common
- Why might “avg” be a poor choice”

downsampling
32 > 16
N 16

32

Figure: Andrej Karpathy

Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

T
|

.
downsampling
112

224

224

Max Pooling

Single depth slice

1124
max pool with 2x2 filters
516 | 7| 8 and stride 2 6 | 8
31210 3 | 4
112 | 3| 4
y

What's the backprop rule for max pooling”?
- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy

Example ConvNet

CONV

QL
—
O
Q.
=
L

BREECIDSIEND
P ET ER LU L
L ET g fe
CVE RS ES B VIET
HEEEENEEES
w4 A= i IS I ¢
dEENIEENER
NN NENER
— |80 1) A
adl F | 1 [[17 FI
— RIS THI IS

POOL
oY

RelLU

RelLU

CONV

Figure: Andrej Karpathy

Example ConvNet

Q
C

—-— 5 o
BN

'

CONV POOL
l RelLU
/ }

RelLU

'

BERECIREIIEND
— NS NE
pg! | F L [l L
— | 50 5 D
:~HHHEEEENENS
— | 5 I O L O
— (MR ENE N
HEEEEEERER
— R RN REE R
aa F 1 1P LI KT
— BT EI IS

CONV POOL CONV
RelLU

U

R

RelLU

CONV POOLCONV

RelLU

CONV

Figure: Andrej Karpathy

Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL go
l RelU l RelU RelU RelU l RelU l ReLUl (Fully-connected)

' v . v

D

4

tuck
=

@wplane

""l
i
"y
=
(!
o B
=
™
.

= T
e L)
ey Lol
=] =
T —
ik =
. s
-
2| ™
i =
- =

Y ,'
-~
L &\s
-
-~
-
-y
-y
S TE
-
-y
-y
-y

HENEREREENE —
BEHAEEREREERNE -

BERENENNEE -
AN)
ENAEENEEEN -

Figure: Andrej Karpathy

Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL Ec

RelLU RelL Rel Rel Rel -
l | l iul l i l iul l iul RiLUl (Fully-connected)
TR = T

o] 7 S = .

B 1 L)

I - .,
o~
e o

= | |

TN T . =™

“W7EE=N R

)).

10x3x3 conv filters, stride 1, pad 1
2x2 pool filters, stride 2 Figure: Andrej Karpathy

Example: AlexNet [Krizhevsky 2012]

convli conv2 conv3 conv4 convs fc6 fc7

1 sample

class
scores

M 05 s 8 05 s L5 = 1 W

3 96 256 384 384 256
227x227 55x55 27x27 13x13 13x13 13x13 | 4096 | 4096 1000

conv conv conv conv conv max full
max max full
norm norm I I l
I l
Extract high level features Classify

each sample
‘max’: max pooling
‘norm”: local response normalization
“full”: fuIIy connected Figure: [Karnowski 2015] (with corrections)

Example: AlexNet [Krizhevsky 2012]

Zoom In

drop? [DROPOUT)

P

Questions?

HOwW do you actually

\
\

[Szegedy et al, 2014] - we nﬂﬂd 10 90 “e.‘?nrer

How do you actually
train these things”

Roughly speaking:
Gather Find a ConvNet Minimize
labeled data architecture the loss

[
Gallinaceous Bird ==

AR L e TS T E e
dp—E W E FLE B v
HEEEsETRG . R
=k '«?;jnmn B == E‘.
- [T~ BRI T] e
B~ KN [e i A
B AR . - —
Lo TS L] e R i

e T e el B .," =L
s e AN T e i
< 5] = myee | § e & = | BE
K e o B S

Training a convolutional
neural network

Split and preprocess your data

Choose your network architecture

Initialize the weights

Find a learning rate and regularization strength
Minimize the loss and monitor progress

Fiddle with knobs

Mini-batch Gradient Descent

Loop:

1. Sample a batch of training data (~100 images)
2. Forwards pass: compute loss (avg. over batch)
3. Backwards pass: compute gradient

4. Update all parameters

Note: usually called “stochastic gradient descent” even
though SGD has a batch size of 1

Regularization

Regularization reduces overfitting:

1
L — Ldata T Lreg Lreg — /’LE‘ ‘W‘ E
)\=Q.OO1 . /\=Q.O1 -)\=.O.1
¥l o gV B

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Overfitting

Overfitting: modeling noise in the training set instead
of the “true” underlying relationship

Underfitting: insufficiently modeling the relationship In
the training set

General rule: models that are
“bigger” or have more capacity
are more likely to overfit

https://en.wikipedia.org/wiki/File:Overfitted_Data.png%5D

(0) Dataset split

Split your data into “train”, “validation”, and “test”:

Dataset

Validation

v l

(0) Dataset split

Validlation

Train: gradient descent and fine-tuning of parameters

Validation: determining hyper-parameters (learning rate,
regularization strength, etc) and picking an architecture

Test: estimate real-world performance
(e.g. accuracy = fraction correctly classified)

(0) Dataset split

Validlation

Be careful with false discovery:

To avoid talse discovery, once we have used a test set
once, we should not use it again (but nobody follows this
rule, since it's expensive to collect datasets)

Instead, try and avoid looking at the test score until the end

(0) Dataset split

Cross-validation: cycle which data is used as validation

Average scores across validation splits

(1) Data preprocessing

Preprocess the data so that learning is better conditioned:

original data zero-centered data normalized data

10 10 10

-10 ~-10
1§ -10 -5 0 S 1§ -10 -3 0 5 10

X -= np.mean(axis=0, keepdims=True)

X /= np.std(axi1s=0, keepdims=True)

Figure: Andrej Karpathy

(1) Data preprocessing

In practice, you may also see PCA and Whitening of the data:

10

original data

19

decorrelated data whitened data

10 10

T -5 0 3 19 -10 -5 0 5 10

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Slide: Andrej Karpathy

(1) Data preprocessing

For ConvNets, typically only the mean is subtracted.
(& .\

An input image (256x256) Minus sign The mean input image

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky

(1) Data preprocessing

Augment the data — extract random crops from the
input, with slightly jittered oftsets. Without this, typical
ConvNets (e.qg. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches
extracted from 256x256 images

Randomly retlect horizontally

Pertorm the augmentation live
during training

Figure: Alex Krizhevsky

