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(Recap) Backprop
From Geoff Hinton’s seminar at Stanford yesterday



(Recap) Backprop
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All of the weights and biases in the network, 
stacked together
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Intuition: “How fast would the error change if 
I change myself by a little bit”
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(Recap) Backprop



(Recap)
A ConvNet is a sequence of convolutional layers, interspersed with 

activation functions (and possibly other layer types)
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Web demo 1: Convolution

http://cs231n.github.io/convolutional-networks/

[Karpathy 2016]

http://cs231n.github.io/convolutional-networks/


Web demo 2: ConvNet in a Browser

http://cs.stanford.edu/people/karpathy/convnetjs/demo/
mnist.html

[Karpathy 2014]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html


Convolution: Stride

Input

Weights

During convolution, the weights “slide” along the input to 
generate each output

Output
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Convolution: Stride

Input

During convolution, the weights “slide” along the input to 
generate each output

Recall that at each position, 
we are doing a 3D sum:

hr = xrijkWijk
ijk
∑ + b

(channel, row, column)



Convolution: Stride

Input

Output

But we can also convolve with a stride, e.g. stride = 2
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Convolution: Stride

Input

- Notice that with certain 
strides, we may not be able to 
cover all of the input

Output

- The output is also half the 
size of the input

But we can also convolve with a stride, e.g. stride = 2
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Convolution: Padding
We can also pad the input with zeros. 
Here, pad = 1, stride = 2

Output
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Convolution: Padding
We can also pad the input with zeros. 
Here, pad = 1, stride = 2
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Convolution: 
How big is the output?
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width win

stride s

kernel k

pp

wout =
win + 2p − k

s
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In general, the output has size:



Convolution: 
How big is the output?
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Example: k=3, s=1, p=1
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s
⎢
⎣⎢

⎥
⎦⎥
+1

= win + 2 − 3
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width win p

stride s

kernel k

VGGNet [Simonyan 2014] 
uses filters of this shapep



Pooling

Figure: Andrej Karpathy

For most ConvNets, convolution is often followed by pooling:
- Creates a smaller representation while retaining the 
most important information
- The “max” operation is the most common
- Why might “avg” be a poor choice?



Pooling



Max Pooling

Figure: Andrej Karpathy

What’s the backprop rule for max pooling?
- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index



Example ConvNet

Figure: Andrej Karpathy



Example ConvNet

Figure: Andrej Karpathy



Example ConvNet
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Example ConvNet

Figure: Andrej Karpathy

10x3x3 conv filters, stride 1, pad 1
2x2 pool filters, stride 2



Example: AlexNet [Krizhevsky 2012]

FC

Figure: [Karnowski 2015] (with corrections)

3 
227x227

max  
full

“max”: max pooling 
“norm”: local response normalization  
“full”: fully connected

1000

class 
scores



Example: AlexNet [Krizhevsky 2012]

Figure: [Karnowski 2015]

zoom in



Questions?



… why so many layers?

[Szegedy et al, 2014]

How do you actually 
train these things?



How do you actually 
train these things?

Gather 
labeled data

Find a ConvNet 
architecture

Minimize 
the loss

Roughly speaking:



Training a convolutional 
neural network

• Split and preprocess your data 

• Choose your network architecture 

• Initialize the weights 

• Find a learning rate and regularization strength 

• Minimize the loss and monitor progress 

• Fiddle with knobs



Mini-batch Gradient Descent
Loop:

1. Sample a batch of training data (~100 images) 

2. Forwards pass: compute loss (avg. over batch) 

3. Backwards pass: compute gradient 

4. Update all parameters

Note: usually called “stochastic gradient descent” even 
though SGD has a batch size of 1



Regularization

L = Ldata + Lreg Lreg = λ 1
2
W 2

2

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Regularization reduces overfitting: 



Overfitting

[Image: https://en.wikipedia.org/wiki/File:Overfitted_Data.png]

Overfitting: modeling noise in the training set instead 
of the “true” underlying relationship

Underfitting: insufficiently modeling the relationship in 
the training set

General rule: models that are 
“bigger” or have more capacity 
are more likely to overfit

https://en.wikipedia.org/wiki/File:Overfitted_Data.png%5D


(0) Dataset split
Split your data into “train”, “validation”, and “test”:

Dataset

Train

Validation

Test



Train

Validation

Test

Train: gradient descent and fine-tuning of parameters

Validation: determining hyper-parameters (learning rate, 
regularization strength, etc) and picking an architecture

Test: estimate real-world performance  
(e.g. accuracy = fraction correctly classified)

(0) Dataset split



Train

Validation

Test

(0) Dataset split

To avoid false discovery, once we have used a test set 
once, we should not use it again (but nobody follows this 
rule, since it’s expensive to collect datasets)

Be careful with false discovery:

Instead, try and avoid looking at the test score until the end



Train Test

(0) Dataset split
Cross-validation: cycle which data is used as validation

Val

TestTrain TrainVal

TestTrain TrainVal

Average scores across validation splits

TrainVal Test



(1) Data preprocessing

Figure: Andrej Karpathy

Preprocess the data so that learning is better conditioned:



(1) Data preprocessing

Slide: Andrej Karpathy

In practice, you may also see PCA and Whitening of the data:



(1) Data preprocessing

Figure: Alex Krizhevsky

For ConvNets, typically only the mean is subtracted.

A per-channel mean also works (one value per R,G,B).



(1) Data preprocessing
Augment the data — extract random crops from the 
input, with slightly jittered offsets. Without this, typical 
ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches 
extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live 
during training

Figure: Alex Krizhevsky


